
Standard Reduction Potentials at 25 °C

Half-reaction			E°(volts)
F ₂ (g) + 2 e	\rightleftharpoons	2 F ⁻ (aq)	+ 2.89
$H_2O_2(aq) + 2 H^+(aq) + 2 e^{-\frac{1}{4}}$	\rightleftharpoons	2 H ₂ O(<i>l</i>)	+ 1.76
$PbO_2(s) + SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^{-\frac{1}{4}}$	ightharpoonup	$PbSO_4(s) + 2 H_2O(\ell)$	+ 1.69
2 HClO(aq) + 2 H ⁺ (aq) + 2 e	-	$C\ell_2(g) + 2 H_2O(\ell)$	+ 1.63
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^{-\frac{1}{4}}$	\rightleftharpoons	$Mn^{2+}(aq) + 4 H_2O(\ell)$	+ 1.51
Au ³⁺ (aq) + 3 e	\rightleftharpoons	Au(s)	+ 1.50
HC{O(aq) + H ⁺ (aq) + 2 e	-	$C\ell^-(aq) + H_2O(\ell)$	+ 1.49
$PbO_{2}(s) + 4 H^{+}(aq) + 2 e^{-\frac{1}{3}}$	ightharpoonup	$Pb^{2+}(aq) + 2 H_2O(\ell)$	+ 1.46
$C\ell_2(g) + 2 e^{-\frac{\pi}{4}}$	ightharpoonup	2 Cl-(aq)	+ 1.36
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14 \text{ H}^+(\text{aq}) + 6 \text{ e}^{-\frac{1}{4}}$	=	$2 \text{ Cr}^{3+}(aq) + 7 \text{ H}_2O(\ell)$	+ 1.36
$O_2(g) + 4 H^+(aq) + 4 e^{-\frac{1}{4}}$	ightharpoonup	2 H ₂ O(<i>l</i>)	+ 1.23
$Br_2(\ell) + 2 e^{-\frac{1}{4}}$	-	2 Br ⁻ (aq)	+ 1.08
Ag ⁺ (aq) + e	\rightleftharpoons	Ag(s)	+ 0.80
Fe ³⁺ (aq) + e ⁻	ightharpoonup	Fe ²⁺ (aq)	+ 0.77
$O_{2}(g) + 2 H^{+}(aq) + 2 e^{-\frac{1}{4}}$	\rightleftharpoons	$H_2O_2(aq)$	+ 0.70
$I_{2}(s) + 2 e^{-\frac{1}{3}}$	\rightleftharpoons	2 I ⁻ (aq)	+ 0.54
$O_2(g) + 2 H_2O(l) + 4 e^{-\frac{1}{2}}$	\rightleftharpoons	4 OH-(aq)	+ 0.40
Cu ²⁺ (aq) + 2 e	=	Cu(s)	+ 0.34
S(s)+ 2 H ⁺ (aq) + 2 e	ightharpoonup	H ₂ S(aq)	+ 0.17
2 H ⁺ (aq) + 2 e	-	$H_2(g)$	0 exactly
Pb ²⁺ (aq) + 2 e	=	Pb(s)	- 0.13
Sn ²⁺ (aq) + 2 e	\rightleftharpoons	Sn(s)	- 0.14
Ni ²⁺ (aq) + 2 e	-	Ni(s)	-0.24
Co ²⁺ (aq) + 2 e	\rightleftharpoons	Co(s)	-0.28
$PbSO_{4}(s) + 2 e^{-\frac{1}{3}}$	ightharpoonup	$Pb(s) + SO_4^{2-}(aq)$	-0.36
$Cd^{2+}(aq) + 2e^{-\frac{1}{4}}$	=	Cd(s)	-0.40
$2 CO_{2}(g) + 2 H^{+}(aq) + 2 e^{-\frac{1}{4}}$	ightharpoonup	$H_2C_2O_4(aq)$	-0.43
Fe ²⁺ (aq) + 2 e	\rightleftharpoons	Fe(s)	-0.44
Cr ³⁺ (aq) + 3 e	-	Cr(s)	-0.74
Zn ²⁺ (aq) + 2 e	\rightleftharpoons	Zn(s)	-0.76
2 H ₂ O(<i>l</i>) + 2 e	\rightleftharpoons	$H_2(g) + 2 OH^-(aq)$	- 0.83
Mn ²⁺ (aq) + 2 e	ightharpoonup	Mn(s)	– 1.18
$A\ell^{3+}(aq) + 3 e^{-\frac{1}{4}}$	ightharpoonup	Al(s)	– 1.68
Mg ²⁺ (aq) + 2 e ⁻ =	-	Mg(s)	- 2.36
Na ⁺ (aq) + e	ightharpoonup	Na(s)	- 2.71
Ca ²⁺ (aq) + 2 e	-	Ca(s)	- 2.87
Sr ²⁺ (aq) + 2 e		. ,	- 2.90
Ba ²⁺ (aq) + 2 e	ightharpoonup	Ba(s)	- 2.91
K ⁺ (aq) + e	-	K(s)	- 2.94

[Data source: Aylward, G.H., & Findlay, T. (2008). SI Chemical Data (6th ed.). Queensland: John Wiley & Sons Australia, Ltd.]

CHEMISTRY DATA SHEET 2014

Copyright

© School Curriculum and Standards Authority, 2012

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the <u>Creative Commons Attribution-NonCommercial 3.0 Australia licence.</u>

This document is valid for teaching and examining until 31 December 2014.

2011/38829(v4) Chemistry Data Sheet updated December 2013 Ref: 14-020

Periodic table

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H hydrogen 1.008																	He helium 4.003
3 Li lithium 6.968	Be beryllium 9.012											5 B boron 10.82	6 C carbon 12.01	7 N nitrogen 14.01	8 O oxygen 16.00	9 F fluorine 19.00	10 Ne neon 20.18
11 Na sodium 22.99	Mg magnesium 24.31											13 A aluminium 26.98	Si silicon 28.09	15 P phosphorus 30.97	16 S sulfur 32.07	17 C chlorine 35.45	18 Ar argon 39.95
19 K potassium 39.10	20 Ca calcium 40.08	SC scandium 44.96	22 Ti titanium 47.87	23 V vanadium 50.94	Cr chromium 52.00	25 Mn manganese 54.94	26 Fe iron 55.85	27 Co cobalt 58.93	28 Ni nickel 58.69	29 Cu copper 63.55	30 Zn 2inc 65.38	31 Ga gallium 69.72	32 Ge germanium 72.63	33 AS arsenic 74.92	34 Se selenium 78.96	35 Br bromine 79.90	36 Kr krypton 83.80
Rb rubidium 85.47	Sr strontium 87.62	39 Y yttrium 88.91	40 Zr zirconium 91.22	41 Nb niobium 92.91	Mo molybdenum 95.96	TC technetium	44 Ru ruthenium 101.1	Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn 118.7	51 Sb antimony 121.8	52 Te tellurium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barium 137.3	57–71 * La lanthanum 138.9	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re rhenium 186.2	76 Os osmium 190.2	77 Ir iridium 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 Te thallium 204.4	82 Pb lead 207.2	Bi bismuth 209.0	Po polonium	85 At astatine	Rn radon
87 Fr francium	88 Ra radium	89–103 ** AC actinium	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	Cn copernicium		114 Fe flerovium		116 LV livermorium		
Key:	ımbar	* Lanti	hanide s	58 Ce cerium 140.1	59 Pr praseodymium 140.9	60 Nd neodymium 144.2	61 Pm promethium	62 Sm samarium 150.4	63 Eu europium 152.0	64 Gd gadolinium 157.3	65 Tb terbium 158.9	66 Dy dysprosium 162.5	67 Ho holmium 164.9	68 Er erbium 167.3	69 Tm thulium 168.9	70 Yb ytterbium 173.1	71 Lu lutetium 175.0
Syml	bol	** Actin	ide	90 Th	91 Pa	92	93 N D	94 P 11	95 Am	96 Cm	97 Bk	98 Cf	99 Fs	100 Fm	101 Md	102 N O	103

Cm

Am

Bk

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (May 2013)]

U

uranium 238.0

Np

Pu

Pa

protactinium 231.0

Th

thorium 232.0

Solubility rules for ionic solids in water

Soluble in water

Standard

atomic weight

Soluble	Exceptions					
	Insoluble	Slightly soluble				
Most chlorides	AgCl	PbCl ₂				
Most bromides	AgBr PbBr ₂					
Most iodides	AgI, PbI ₂					
All nitrates	No exceptions					
All ethanoates	140 έλδεμιστίδ					
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄				

Insoluble in water

Insoluble	Exceptions					
	Soluble	Slightly soluble				
Most hydroxides	NaOH, KOH, Ba(OH) ₂ (note: NH ₄ OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂				
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃					
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄					
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S					

Soluble = more than 0.1 mole dissolves per litre Slightly soluble = between 0.01 and 0.1 mole dissolves per litre Insoluble = less than 0.01 mole dissolves per litre

Colours of selected ionic substances

Es

Cf

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid.

No

Lr

Md

Selected exceptions to these two basic rules are noted below.

Fm

Ionic Solid	Colour
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	grey
manganese(IV) oxide	black
silver carbonate	yellow
silver iodide	pale yellow
silver oxide	brown
silver sulfide	black

Other coloured substances

Most gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

Substance	State	Colour
copper	solid	salmon pink
gold	solid	yellow
nitrogen dioxide	gas	brown
sulfur	solid	yellow

Coloured ions in aqueous solution

Cation	Colour
Cr ³⁺	deep green
Co ²⁺	pink
Cu ²⁺	blue
Fe ²⁺	pale green
Fe ³⁺	pale brown
Mn ²⁺	pale pink
Ni ²⁺	green

Anion	Colour
CrO ₄ ²⁻	yellow
Cr ₂ O ₇ ²⁻	orange
MnO ₄ -	purple

Number of moles

Number of moles of solute

Number of moles of a gas at STP n

PV = nRTIdeal gas law

ppm = $\frac{\text{mass of solute (mg)}}{\text{mass of solution (kg)}}$ Parts per million

pH of a solution $pH = -log[H^{+}]$

Units

Formulae

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or kelvin (K).

It may be assumed that 0.0 °C = 273.15 K

Energy changes are given in kilojoules (kJ)

Pressures are given in kilopascals (kPa)

Solution concentrations are given in the units moles per litre (mol L-1),

grams per litre (g L-1) or parts per million (ppm).

Constants

Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹

Avogadro constant, N = 6.022×10^{23} mol⁻¹

Volume of 1.00 mol of an ideal gas at 0.0 °C and 100.0 kPa is 22.71 L

S.T.P. is 0.0 °C and 100.0 kPa

Equilibrium constant for water at 25 °C, $K_w = 1.00 \times 10^{-14}$

Coloured halogens

n	Colour	Halogen	Colour of
	deep green		free element
	pink	F ₂ (g)	yellow
	blue	Cl ₂ (g)	greenish-yellow
	pale green	$Br_2(\ell)$	red
	pale brown	$I_2(s)$	purple
	pale pink		

Halogen	Colour of halogen in aqueous solution
Cl ₂ (aq)	pale yellow
Br ₂ (aq)	orange
$I_2(aq)$	brown

Halogen	Colour of halogen in organic solvent
Br ₂	red
I ₂	purple